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Abstract. It was observed by Veltman a long time ago that a special value for the Higgs boson mass could
lead to a cancellation of the quadratically divergent corrections to the Higgs boson’s squared mass which
appear at one loop. We present a class of low energy models that allow one to soften the naturalness
problem in the sense that there can be a cancellation of radiative corrections appearing at one loop. The
naturalness problem is shifted from the 1 TeV region to the 10 TeV region. Depending on the specific model
under consideration, this scale can even be shifted to a higher energy scale. Signatures of these models
are discussed.

1 Introduction

The standard model is a gauge theory based on the struc-
ture group SU(3) × SU(2) × U(1) [1, 2]. The electroweak
gauge symmetry is spontaneously broken by means of the
Higgs mechanism [3]. This mechanism requires the inclu-
sion in the model of a fundamental scalar field which is
charged under U(1) and is in the fundamental representa-
tion of SU(2). It is often argued that the standard model
with the Higgs mechanism as a mechanism for gauge sym-
metry breaking cannot be a theory valid over a wide range
of energies because the squared mass of a scalar field re-
ceives corrections that are quadratic divergent if a naive
cutoff is used to regularize the model. In the standard
model one obtains
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in the one loop approximation [4]. The mass term of the
Higgs boson is denoted by mH , that of the W -boson by
mW , that of the Z-boson by mZ and that of the top quark
is denoted by mt. Finally nf is the number of flavors prop-
agating in the loop and g is the SU(2) gauge coupling con-
stant. If the cutoff is large, e.g. of the order of a possible
grand unification scale 1016 GeV, it requires an unnatural
adjustment between the bare mass m0

H of the scalar field
and the “corrections” to insure a physical Higgs mass in
the 100 GeV region [5]. This is known as the naturalness
problem. It should nevertheless be noted that the standard
model is renormalizable [6]. Quadratic divergences can be
absorbed in the parameters of the standard model in a way
which is mathematically completely consistent.
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An obvious solution to the naturalness problem is to
avoid the Higgs mechanism and the inclusion of fundamen-
tal scalars in the model like in e.g. technicolor theories or
top condensate models [7]. Another approach is to embed
the standard model into another more fundamental the-
ory where quadratic divergences are either absent like in
supersymmetric models [8] or small like in models with
extra dimensions [9] because in that case the fundamental
scale of nature is assumed to be not much larger than the
electroweak scale.

Recently another point of view has been revived. It had
been proposed a long time ago [10], that the Higgs boson
could be a pseudo-Goldstone boson. This idea has recently
been revived in the form of the Little Higgs models [11].
The Little Higgs models have been shown to possess an
approximate symmetry that can protect the Higgs mass
from radiative corrections if the cutoff is not too large, i.e.
10 TeV. Unfortunately the simplest examples of that class
of models do not automatically have a custodial symmetry
and are thus potentially severely constrained by experi-
ments [12].

Long before that, it had been speculated that a special
value for the Higgs boson mass could cancel the quadratic
divergences corrections to the Higgs boson mass [4]. This
leads to the so-called Veltman relation:

m2
H = 4m2

t − 2m2
W − m2

Z . (2)

But even if this relation was fulfilled, i.e. if the Higgs bo-
son mass was of the order of 316 GeV, it does not hold
beyond the one loop approximation. The consequences of
a possible cancellation of the logarithmic divergent terms
have been considered in [13]. Note that there is no need to
require an exact cancellation of the one loop quadratic di-
vergences [14].

In this work we shall argue that the observation made
by Veltman some 22 years ago can be revived in a modern
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framework. We shall present a class of models for which,
as in the Little Higgs models case, we do not describe the
high energy completion and we shall thus assume that our
models have a cutoff in the 10 TeV region. The simplest
way to do that is to assume that the standard model Higgs
boson mass is of the order of 316 GeV and that this model
has a cutoff of 10 TeV. We note that such a high mass for
the Higgs boson seems to be in contradiction with fits based
on electroweak precision measurements [15]. Furthermore,
in that case, there is no way to push the cutoff scale above
the 10 TeV scale. Our basic observation is that if there is
some new physics beyond the standard model with a new
bosonic degree of freedom φ that is coupled to the standard
model in a minimal way, i.e.

αh†hφ†φ, (3)

where h is the standard model Higgs boson and α is a
parameter of order 1, then the Higgs boson mass can nat-
urally be of the order of 100 GeV if the models have a cut-
off of the order of 10 TeV. Furthermore, depending on the
model under consideration, this cutoff scale can be pushed
upwards. The naturalness problem is not solved by these
models but is only softened. It must be emphasized that
these models are theoretically not as compelling as the Lit-
tle Higgs models, because they do not have an approximate
symmetry that protects the Higgs boson squared mass
against radiative corrections, but they have a custodial
symmetry and are thus not constrained by experiments.
These models are semi-natural in the sense proposed by
Veltman [4]. A new boson that couples to the Higgs boson
of the standard model according to (3) implies a correction
to the Higgs boson squared mass given by

m2
H ≈ m02

H + αΛ2
c

+
3g2Λ2

32π2m2
W

(
4v2λ + 2m2

W + m2
Z − 4

∑
f

(nf

3

)
m2

f

)

+
Λ2

4π2 α, (4)

where λ is the Higgs boson self-coupling, v = 174 GeV
the vacuum expectation value and Λc is the scale asso-
ciated with the new physics beyond the standard model.
Note that depending on the model our definition of Λc in-
cludes a potential mixing angle between the scales of the
different scalar sectors. In the sequel we shall describe two
classes of models that should be considered as low energy
effective theories of an unknown high energy theory. If we
introduce the operator (3) in the standard model, we po-
tentially introduce a new naturalness problem. Because φ
is a bosonic degree of freedom, its squared mass will in
general receive quadratic corrections. We have identified
two classes of models where this problem is under control.
The first class of models are models where Λc is identical
to the standard model electroweak scale, and where a sym-
metry implies that the corrections to the squared mass of
the scalar field φ are identical to those of the scalar fields
h. The second class of models are models where the scale

involving the second scalar field φ, i.e. its mass, is rather
near to the cutoff scale Λ. The corrections to its squared
mass are thus small.

Clearly, if α is a positive parameter of the order of one,
a cancellation, or partial cancellation, of the quadratic cor-
rections can take place and the Higgs boson mass can nat-
urally be of the order of 100 GeV if the cutoff is of the order
of 10 TeV. Note that the two loop corrections are expected
to be of the order of

( 1
16π2

)2
Λ2 and are thus small if the

cutoff is as low as 10 TeV. The corrections to the potential
of the new scalar degree of freedom are model dependent
and shall be discussed below for each model considered.
Note also that if α is a negative parameter of order 1 and
if Λc < Λ, there is a negative contribution at tree level to
the Higgs boson mass that can, in principle, reverse the
sign of the Higgs boson squared mass and thus trigger the
Higgs mechanism in the electroweak sector of the stan-
dard model. In that scenario we have to require that the
new scale is lower than the cutoff scale to be certain that
the low energy effective theory remains valid. Neverthe-
less, in that case, there is, in general, no cancellation of
the quadratic divergences.

In the first section, we shall consider a model where
Λc is assumed to be equal to the scale of the electroweak
interaction. In the second section we will describe a model
where the mass of the second scalar field is assumed to be
near to the cutoff of the models. We then draw our con-
clusions.

2 A standard model replica

Let us consider a model based on the gauge group SU(3)C̄×
SU(2)L̄ × U(1)Ȳ × SU(3)C × SU(2)L × U(1)Y , where
SU(3)C̄ × SU(2)L̄ × U(1)Ȳ = Gn is the gauge group
describing the physics beyond the standard model and
SU(3)C × SU(2)L × U(1)Y = GSM is the standard model
gauge group. Both SU(2) groups have the usual weak
gauge coupling g and both SU(3) groups have the usual
strong coupling gs. Furthermore, we assume also that both
U(1) groups have the same usual gauge coupling g′. The
number of fields of the model is thus doubled in comparison
to the standard model (see Table 1), and there is a discrete
symmetry transforming the standard model fields (Higgs
boson included) into the fields charged under Gn. The
motivation to consider this model is that because of the
discrete symmetry, the corrections to the masses of both
scalar degrees of freedom are identical. Therefore only one
relation has to be fulfilled to insure the naturalness of the
model if the cutoff is assumed to be around 10 TeV. The
Lagrangian of the model is given by

Lrep = LSM + Ln − αh†hΦ†Φ, (5)

where h is the SU(2)L scalar doublet and Φ is the SU(2)L̄

scalar doublet. This is the most generic, gauge invariant
Lagrangian. LSM is the standard model Lagrangian and
Ln is the Lagrangian containing the new fields; it is ob-
tained by applying the discrete symmetry mentioned above
to LSM. Note that this model has a custodial symmetry
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Table 1. Particle content of the minimal SM replica model

SU(3)C SU(2)L U(1)Y SU(3)C̄ SU(2)L̄ U(1)L̄

eR 1 1 −1 1 1 0

LL =

(
νL

eL

)
1 2 −1/2 1 1 0

uR 3 1 2/3 1 1 0
dR 3 1 −1/3 1 1 0

QL =

(
uL

dL

)
3 2 1/6 1 1 0

h =

(
h+

h0

)
1 2 1/2 1 1 0

f2
R 1 1 0 1 1 −1

FL =

(
f1

L

f2
L

)
1 1 0 1 2 −1/2

k1
R 1 1 0 3 1 2/3

k2
R 1 1 0 3 1 −1/3

KL =

(
k1

L

k2
L

)
1 1 0 3 2 1/6

Φ =

(
φ+

φ0

)
1 1 0 1 2 1/2

and is thus not in contradiction with electroweak precision
measurements. The potential of the model reads

V (h, Φ) = m2
sh

†h + m2
sφ

†φ + λ(h†h)2 + λ(Φ†Φ)2

+αh†hΦ†Φ. (6)

The vacuum expectation value of the scalar fields v is
given by

v =

√
−m2

s

2λ + α
, (7)

note that m2
s < 0, the potential is bounded from below if

2λ > α. The parameter ms receives the usual quadratic di-
vergencies:
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If we require the complete cancellation of the quadratic
divergent corrections induced at one loop, we obtain the
analog of Veltman’s condition:
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≈ 0.86, (9)

which insures the cancellation of the quadratic divergences
induced by the one loop corrections.

Signatures

The operator h†hΦ†Φ induces a mixing between the two
scalar doublets. Let us denote the mass eigenstates by h1
and h2. One finds

h1 =
1√
2
h0 − 1√

2
φ0, (10)

h2 =
1√
2
h0 +

1√
2
φ0,

i.e. the mixing is maximal. After this diagonalization pro-
cedure, h1 and h2 couple to both fermions and their repli-
cas. There is nevertheless no new source of neutral flavor
changing. The replicas are only extremely weakly coupled
to the standard model particles; the only possible inter-
action is mediated by the scalar bosons. In that sense the
decays of the scalar bosons to replicas should be considered
as missing energy decay modes. Therefore, the observable
spectrum of the theory is the standard model with a fur-
ther neutral scalar boson. The squared masses of the scalar
bosons are given by

m2
h1

= m02
h − αv2 = 2(2λ − α)v2, (11)

m2
h2

= m02
h + 3αv2 = 2(2λ + α)v2,

with v = 174 GeV. Let us assume that the lightest Higgs
boson has a mass mh1 of about 130 GeV and that the
one loop quadratically divergent corrections cancel com-
pletely; then one finds mh2 = 349 GeV. Note that the
production and decay modes of these scalar bosons are
quite different from the standard model case. At an elec-
tron positron collider the production rate is 1/2 of that of
the standard model because of the mixing between the two
scalars reduces the coupling of each of the scalars to the
SU(2)L gauge bosons by a factor 1/

√
2. One has schemat-

ically σ(e+e− → HZ∗) ∼ 1
2σ(e+e− → h1/h2Z

∗) where it
is understood that the appropriate scalar mass has to be
used in the formula. Similarly the couplings to fermions
charged under GSM, i.e. the standard model fermions, is
reduced by the same factor. This implies that the LEP lim-
its for these scalar bosons are less stringent in this model.
The lightest Higgs boson decays as in the standard model
dominantly to b-quarks if its mass is around 100 GeV. The
cross section is σ(e+e− → bb̄Z∗) = 1

4σ(e+e− → bb̄Z∗)
∣∣
SM

and is thus much smaller than in the standard model.
We have assumed that only the lightest Higgs boson con-
tributes at a significant level. The cross section to missing
energy, i.e. when the Higgs boson decays to the b-quark
replicas, is equal in magnitude to the b–b̄ decay mode:
σ(e+e− → missing energy Z∗) = σ(e+e− → bb̄Z∗). The
missing energy corresponds to a scalar of mass mh1 . Notice
that both scalars couple to the standard model particles
and to the replica particles. This implies that fifty per-
cent of the scalar bosons should be missing energy decays.
Note that the production at a hadron collider, where one
of the main production modes for the Higgs boson is via a
top quark triangle, will also be suppressed by a factor 1/2
compared to the standard model expectation.
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2.1 Elusive new physics

Let us consider the same model as described above but
we shall now assume that the SU(2)L̄ gauge symmetry
remains unbroken. The scalar potential is assumed to be

V (h, Φ) = m2
sh

†h − m2
sφ

†φ + λ(h†h)2 + λ(Φ†Φ)2

+αh†hΦ†Φ, (12)

and the discrete symmetry is softly broken by the mass
terms of the scalar fields. The vacuum expectation values

are given by vh =
√

−m2
s

2λ+α and vΦ = 0. This implies that
there is no mixing between the two scalar fields.

The squared masses receive quadratically divergent cor-
rections:
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where mh is the mass of the physical standard model Higgs
boson h and

m2
φ ≈ m02

s + αv2

+
3Λ2

16π2

(
4λ +

3
2
g2 +

1
2
g′2 − 4

∑
fc

(nfc

3

)
λ2

fc

)

+
Λ2

4π2 α, (14)

where mφ is the mass of the copy of the standard model
Higgs boson and λfc are the Yukawa couplings; note that
we have λfc = λf . Note also that if we assume that the
parameters of the second gauge group Gn are identical
to those of GSM besides the sign of the mass of the scalar
doublets there is only one relation that needs to be fulfilled:
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≈ 2.13. (15)

For the numerical estimate we used mh = 130 GeV and
took only the top quark into account. This would imply a

mass of approximately mΦ =
√

m2
H

2 + αv2 ≈ 270 GeV for
the second neutral scalar boson. It is therefore natural to
have a cancellation, or near cancellation, of the quadratic
divergences if α is of order 1. On the other hand, the correc-
tions induced at two loops are not vanishing. This is why
we claim that the naturalness problem is under control if
there is a fundamental cutoff for the model around 10 TeV.

Fig. 1. Extraction of the Higgs bosons coupling. The W -bosons
are emitted by the colliding fermions

Signatures

A signature of this class of models is again a decay of
the standard model Higgs boson to particles that are not
charged under SU(2)L×U(1)Y . But if only the gauge sym-
metry describing the gauge interactions is broken, the new
physics signals are much more subtle. The measurement
of the Higgs boson self-coupling (c.f. Fig. 1) becomes very
interesting. In that case a sizable new physics effect is ex-
pected. At a linear collider with a center of mass energy of
1000 GeV one expects σ(e++e− → φφν̄ν) ≈ 7.4×10−6 pb.
This must be compared to the standard model cross section
σ(e++e− → hhν̄ν) = 8.9×10−5 pb, assuming a Higgs bo-
son mass of 130 GeV. We have done these estimates using
CompHEP [16], taking only the diagrams corresponding
to Fig. 1 and its standard model counterpart into account.
A large effect due to the replica sector should be observed.
This represents a further motivation for a measurement of
the Higgs boson self-coupling at a future linear collider.
The signal is a missing energy corresponding to two scalar
fields with a mass around 270 GeV.

2.2 A high energy completion?

The cutoff scale can be shifted to a higher scale if we con-
sider N replicas or copies of the standard model: (SU(3)C̄×
SU(2)L̄ × U(1)Ȳ )N × SU(3)C × SU(2)L × U(1)Y . In our
case each SU(3) × SU(2) × U(1) group has three gener-
ations. Note that our model should not be confused with
the anti grand unification model proposed in [17], where
N stands for the generation number. The vanishing of the
quadratic divergences appearing at N loops requires that
N equations are fulfilled. Note that if we have N copies
of the standard model, we have N + (N − 1) + (N − 2)+
(N − 3) + (N − 4) + . . . =

∑N
K=0(N − K) parameters

λN at our disposition. In that case the N equations can
be fulfilled and the scale for the fundamental cutoff can
be shifted as high as it is necessary for model building
issues. Note that this approach predicts numerous new
particles that are stable and very weakly interacting with
the usual matter.
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3 Second case: splitting the scales

We now come to the second case mentioned previously,
namely the case where the scale for new physics is not far
away from the cutoff scale. In order to illustrate the idea,
we shall consider a generic two Higgs doublets model in
the limit where the mass of one of the Higgs doublets h is
low lying, whereas the mass of the second Higgs doublet H
mass is high. Veltman’s relations for a generic two Higgs
doublets model have been considered in [18]. The fermions
are assumed to couple to both scalar doublets, and the
hypercharge of H is taken to be equal to that of h. This
point is however not crucial; the only requirement is that
the lightest of the Higgs bosons couples to all fermions in
order to reproduce the standard model in the decoupling
limit we shall consider. In the sequel we shall assume that
the mass of the boson H is rather near to the cutoff scale.
For this reason, the possible neutral flavor changing decays
are strongly suppressed. Furthermore we assume that most
of the symmetry breaking is due to the low lying doublet,
i.e. v1 ≈ v = 174 GeV and v2 ≈ 0. In that limit the masses
of the charged and CP odd Higgs bosons are of the order
of the heavy neutral scalar boson. The assumption v2 ≈ 0
implies that the coefficients of the operators h†hh†H or
H†HH†h are nearly vanishing. Again the important terms
of the potential for our consideration are

αh†hH†H + βh†HH†h. (16)

Under the assumptions mentioned above, the leading
radiative corrections to the squared masses of the Higgs
bosons are given by
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where λ2 is the self-coupling of the second scalar doublet
H. Now we can require the cancellation, or near cancella-
tion, of the quadratic corrections to the squared mass of h.
One obtains

α +
1
2
β ≈ 3

3g2

8m2
W


4
∑

f

(nf

3

)
m2

f − m2
h − 2m2

W − m2
Z




≈ 6.4, (19)

using again mh = 130 GeV for the numerical estimate. The
first factor 3 will be explained below. Note that although
we could adjust α and β to cancel the quadratically di-
vergent corrections to the mass of the Higgs boson h, the
corrections to the second Higgs boson mass are in general
rather large. This is the reason why we assume that the
mass of the second Higgs boson mH is not much lower than
the cutoff, in which case the quadratic corrections to m2

H
are small compared to its bare value. The mass of the sec-
ond scalar field H could be around 9 TeV if we take a cutoff
of 10 TeV. But if the mass of the scalar field is not much be-
low the cutoff, it is important to consider the full one loop
corrections. This explains the term

(
Λ2 − m2

H ln Λ2+m2
H

m2
H

)
in (18). For mH = 9 TeV and Λ = 10 TeV, one finds that
Λ2 should be replaced by approximately Λ2/3. This ex-
plains the first factor 3 in (19).

Note that in that case it seems very difficult to push the
cutoff scale upwards in a natural way. It has recently been
pointed out that the Higgs mechanism can be induced by
a large splitting between the two masses of a two Higgs
doublets model [19]. It is thus possible to construct a two
Higgs doublets model that is natural up to a scale of 10 TeV
which furthermore triggers the Higgs mechanism. It will be
very difficult to differentiate this model from the standard
model since the low energy theory below the 9 TeV scale
is just the standard model.

We finally want to point out that it could be possible
to shift the supersymmetry breaking scale from 1 TeV to
about 10 TeV if new operators are added, for example, to
the minimal supersymmetric model. In that case one would
have to assume that the logarithmic terms that lead to a
new naturalness problem if the supersymmetric scale is
higher than 1 TeV are cancelled by these new operators.
We note that supersymmetry would provide an ultraviolet
completion to the model.

4 Conclusions

We have described a class of models that are semi-natural
in the sense proposed by Veltman in [4] a long time ago.
The idea proposed by Veltman considered in a modern
framework provides an interesting alternative to the Lit-
tle Higgs models whose minimal versions are potentially
severely constrained by experiments. In our approach a
cancellation of the radiative corrections are only semi-
natural because there is no symmetry that imposes them.
Nevertheless this is a possibility that cannot be ignored.
The new term allowing the cancellation to occur can be
generated by different types of models. We have described
two classes of models where such a term appears.

The first type of models is a direct product of the stan-
dard model and of its replica. If both SU(2) × U(1) sym-
metries are broken, the Higgs physics is considerably af-
fected. If only the electroweak gauge symmetry is broken,
then the new physics effects are much more subtle and
only a measurement of the scalar potential will allow one
to distinguish our scenario from the standard model. This
class of model is particularly appealing since the cutoff
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scale can, in principle, be shifted to any desirable scale by
introducing more replicas of the standard model.

We then described a two Higgs doublets model where a
cancellation of the one loop quadratic divergences is possi-
ble. The second class of model will be much more difficult
to distinguish from the standard model and finding a de-
viation will require one to test the very high energy region
around the mass of the second Higgs boson, which can be
as high as 9 TeV.

We would like to emphasize that the main point of
this paper is that, due to an “accidental” cancellation of
the one loop quadratic divergences, the true scale for the
naturalness problem might be around 10 TeV rather than
around 1 TeV as it is usually argued. We do not claim,
as Veltman did, that a formula such as (1) could be used
to compute the Higgs boson’s mass. We propose to use
Veltman’s relation as a criterion for the naturalness of
the model. One could imagine introducing different cutoffs
for the different particles entering the loop, but even in
that case there will be a Veltman type formula that is
either fulfilled or not. If it is fulfilled or even approximately
fulfilled, it can be interpreted as a sign that the true scale
for the naturalness problem is 10 TeV rather than 1 TeV.

Ultraviolet completions of the models we are propos-
ing have not been considered. One could imagine having
N copies of the standard model in the case where the mass
scale of both scalars is much below the cutoff scale. Note
that if N ≥ 14, one could consider a cutoff of the order of
the grand unification scale. One could also imagine a super-
symmetric high energy completion in the case where the
mass of one of the scalar doublets is just below the cutoff
scale. Another well studied possibility is that the funda-
mental scale of physics is in the TeV region if nature has
more than four dimensions [9]. In our approach the scale
for these new extra dimensions might be around 10 TeV
and still provide a solution to the naturalness problem.
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